

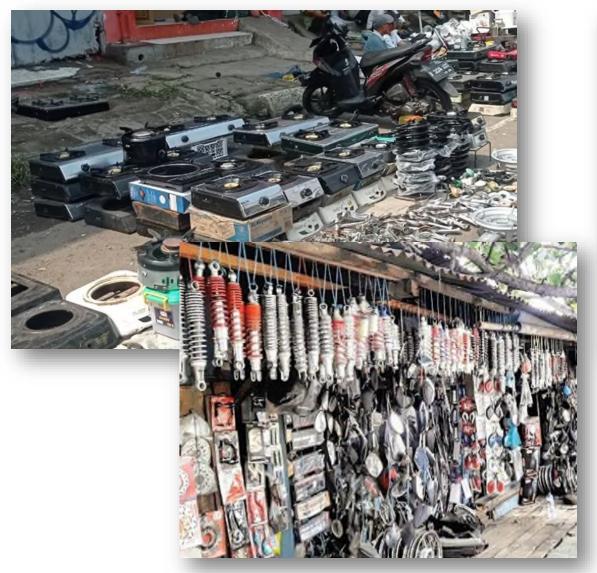
Sustainability and Circular Economy

Webinar for CAIA South Africa

Thursday 9 October 2025

Dr Colin Pilbeam

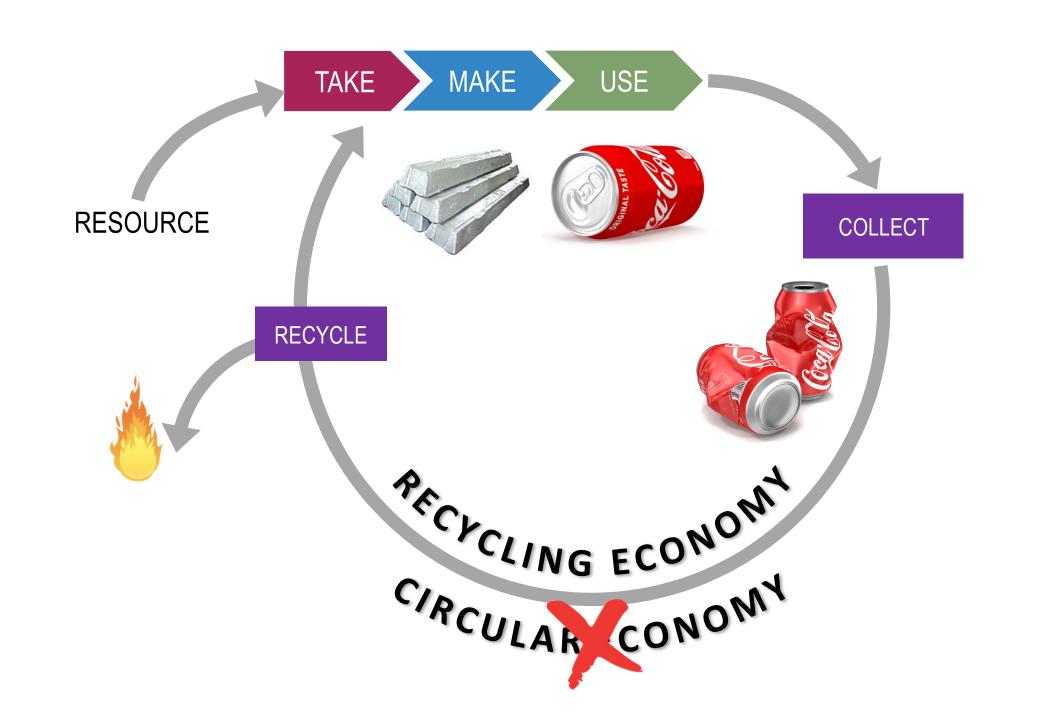
Professor of Organizational Safety Safety and Accident Investigation Centre Cranfield University, UK

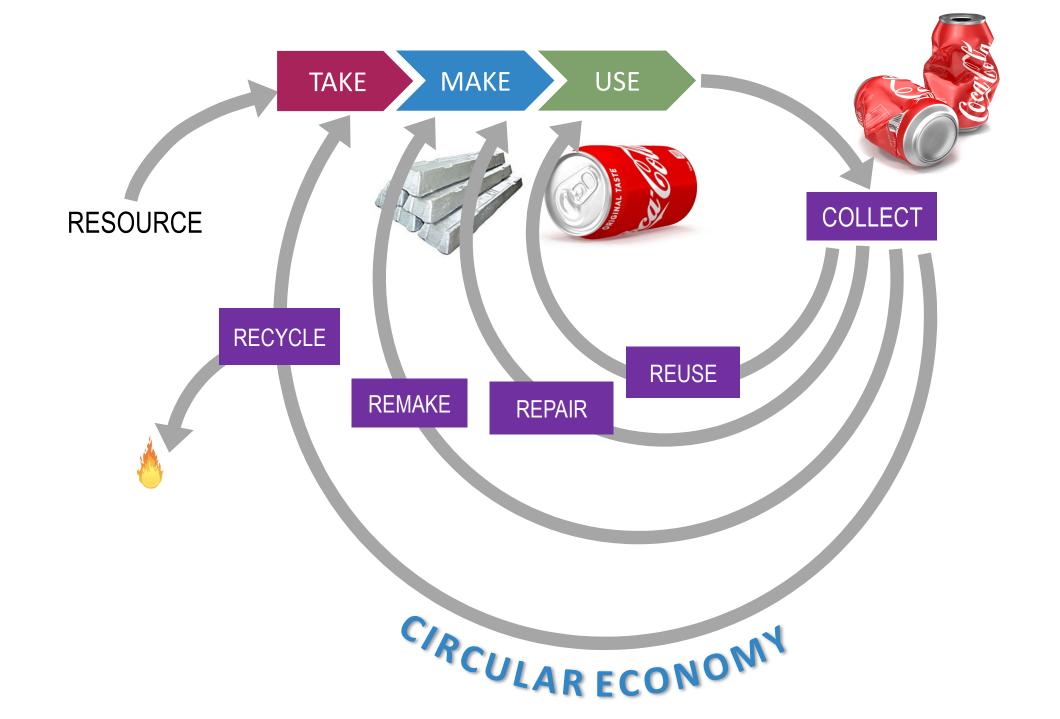


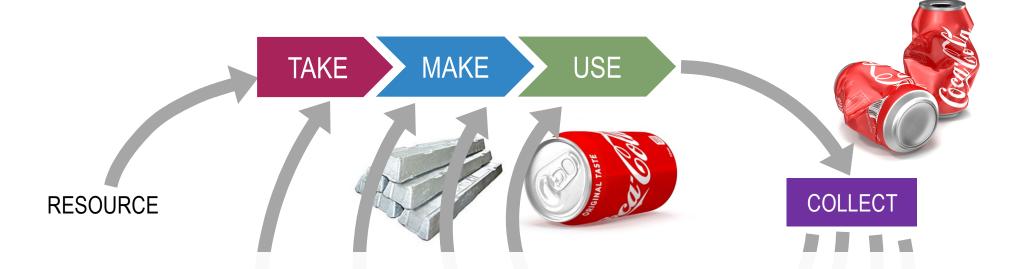
What is Circular Economy? What's new

What is Circular Economy? What's new

Clean Growth


- Economic growth or development that focuses on minimising environmental impact, restores nature, not depletes it.
- Growth that respects limits and unlocks new possibilities.
- Circular Economy, green tech, clean energy are the pillars of clean growth.



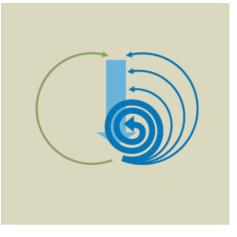


- An economic model short product life, buy more
- The availability of cheap, easily accessible materials and energy
- 'Cradle to grave'

Not sustainable!

- Industrial economy: restorative and regenerative
 - 1. **Minimise the consumption** of finite resources and/or raw materials in the manufacture of products
 - 2. Aimed at keeping products at their **highest utility** and value Maximising the **recirculation**
 - 3. Minimising the contents that could end up in landfill or incineration
- 'Cradle to cradle'

Recovery options



Choices depend on the characteristics of products Ideas are the same; longer in use & retain value

Sources of value creation in CE

Power of the inner circle

Power of circling longer

Power of cascaded use

Power of pure, nontoxic, or at least easier-to-separate inputs and designs

PRINCIPLE ATTRIBUTE

ENABLER

CASCADES ORIENTATION

SYSTEMS THINKING

TECHNOLOGY

WASTE **ELIMINATION**

CIRCULARITY

ECONOMIC OPTIMISATION

BUILT-IN RESILIENCE

MAXIMISATION OF RETAINED VALUE

COLLABORATIVE **NETWORK**

MARKET

ENVIRONMENTAL CONSCIOUSNESS

SHIFT TO **RENEWABLE ENERGY**

LEAKAGE **MINIMISATION** **OPTIMISATION OF CHANGE**

INNOVATION

CIRCULAR ECONOMY VALUES

Redefining Circular Economy Principles (Ripanti & Tjahjono, 2019)

The current issue and full text archive of this journal is available on Emerald Insight at: www.emeraldinsight.com/0957-4093.htm

Unveiling the potentials of circular economy values in logistics and supply chain management

CE values in logistics and

723

Received 28 April 2018 Bexisted 21 March 2019 Accepted 9 April 2019

Eva Faja Ripanti

Department of Informatics, Universitas Tanjungpura, Pontianak, Indonesia, and Benny Tjahjono

Centre for Business in Society, Coventry University, Coventry, UK

Abstract

Purpose - The purpose of this paper is to unveil the circular economy (CE) values with an ultimate goal to provide tenets in a format or structure that can potentially be used for designing a circular, closed-loop supply chain and reverse logistics.

Design/methodology/approach - This is desk-based research whose data were collected from relevant publication databases and other scientific resources, using a wide range of keywords and phrases associated with CE, reverse logistics, product recovery and other relevant terms. There are five main steps in the reformulation of CE principles: literature filtering, literature analysis, thematic analysis, value definition and value mapping. Findings – In total, 15 CE values have been identified according to their fundamental concepts, behaviours,

characteristics and theories. The values are grouped into principles, intrinsic attributes and enablers. These values can be embedded into the design process of product recovery management, reverse logistics and closed-loop supply chain.

Research limitations/implications - The paper contributes to the redefinition, identification and implementation of the CE values, as a basis for the transformation from a traditional to a more circular supply chain. The reformulation of the CE values will potentially affect the way supply chain and logistics systems considering the imperatives of circularity may be designed in the future.

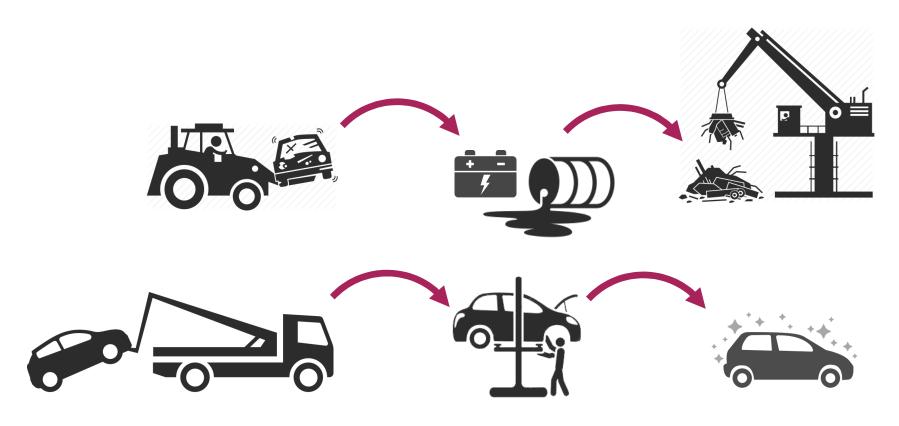
Originality/value - The reformulation principles, intrinsic attributes and enablers of CE in this paper is considered innovative in terms of improving a better understanding of the notion of CE and how CE can be applied in the context of modern logistics and supply chain management.

Keywords Sustainability, Literature review, Reverse logistics

Paper type Literature review

1. Introduction

The circular economy (CE) is defined as a global economic model to minimise the consumption of finite resources, which focuses on the intelligent design of materials, product and systems (EMF, 2013a). It also supports separating treatment between technical and biological materials to maximise the design for reuse, to return to the biosphere and retain value through innovations across fields (Webster, 2015; Lacy and Rutqvist, 2015). Transitioning from the linear to a CE not only requires a fine-tuning that reduces the negative impacts of the linear economy, but also a whole system approach that builds upon a number of guiding principles. These principles allow resilience to be built into the CE system, ensuring the long-term generation of economic opportunities and at the same time offering societal and environmental benefits.

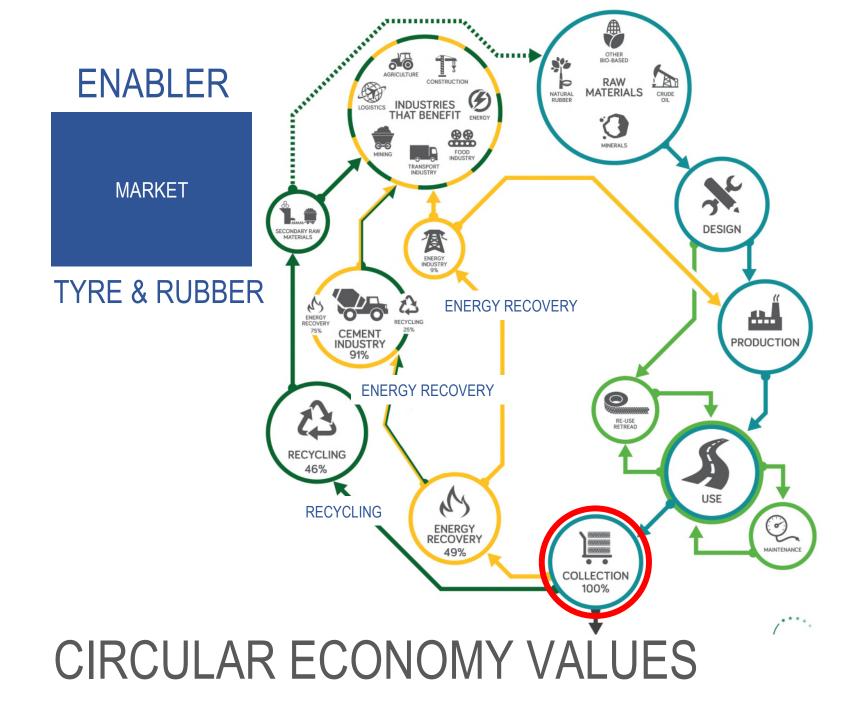

CE principles have been elaborated by several researchers in various manners and from various viewpoints: Feng (2004) in Yuan et al. (2006), Pintér (2006), Yuan et al. (2006), Yong (2007), Geng et al. (2012), EMF (2013a, 2015), Stahel (2013) and Pan et al. (2015). Principles, in theory, can support the understanding of a concept; however, principles alone are often insufficient to support the practicality of that concept. This paper therefore aims to reformulate the existing CE principles into CE values (or tenets) in a format or structure that supports the design of a circular, closed-loop supply chain and reverse logistics. In this paper, CE principles were reformulated through five steps: data filtering, literature analysis, thematic analysis, CE values definition and CE values mapping.

Logistics Management Vol. 30 No. 3, 2029 pp. 225-742 ♥ Enemaid Publishing Limited TRUE 10 1 NOW THE DAMAGED BY

Avoidance of loss of opportunities to maximise the cascading of (a) biological materials and the inability to incorporate the nutrient back into the biosphere due to contamination, and (b) technical materials that are lost due to loss of materials, energy, components and materials are not (or cannot be) recovered

CIRCULAR ECONOMY VALUES

ATTRIBUTE



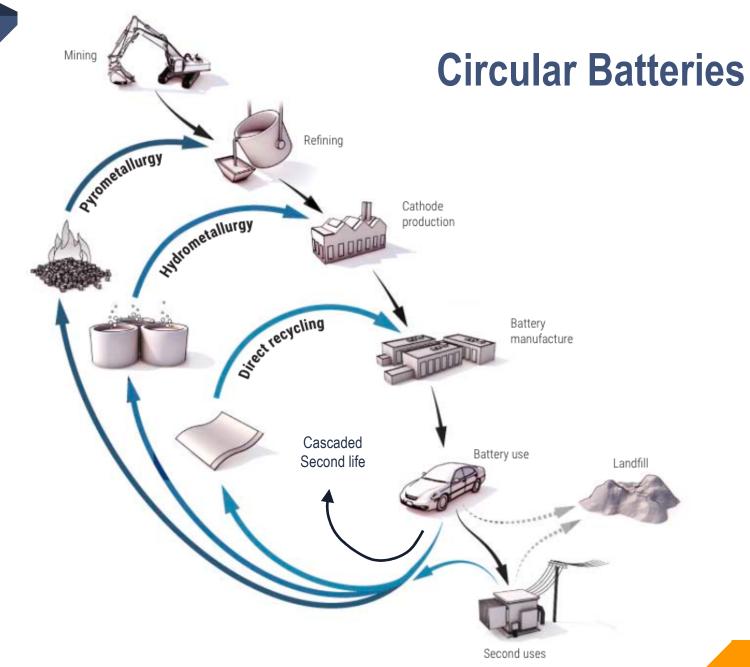
DESIGN FOR DISASSEMBLY

Products that lend themselves to a circular process; preserving their value or component by keeping them in use longer through repair, reuse, remanufacture and recycle

CIRCULAR ECONOMY VALUES

Model	Meaning	Examples
Dematerialisation	Replacing physical infrastructure and assets with digital/virtual services (digitisation)	Shift from physical DVD stores to online film and music services, etc.
Product/service on-demand	Producing a product or providing a service only on-demand	3D printed parts, furniture and designer clothes/footwear are only manufactured once ordered.
Recovery of secondary materials/by-products	Value optimization by creating products from secondary raw materials/by-products and recycling	Plastics bottles back into plastics bottles; plastic bottles recycled into fleece jackets and fibres for shoe lining;
Repair, refurbish, remanufacture and recondition	Product has a next life (e.g. after remanufacture – the process of restoring the product or part functionality to "as-new" quality; facilitated by design for disassembly).	Aero-engines having been overhauled
Performance based (Pay per use) - PSS	Delivers product performance or results rather than the product or service itself. The customer pays defined level of performance	Printing (pay per print); aero-engines (power by the hour).
V		Y

BUSINESS MODELS CIRCULAR ECONOMY



CATERPILLAR®

Battery as a Service (BaaS)

Power of the inner circle

Power of circling longer

Power of cascaded use

Power of pure, nontoxic, or at least easier-to-separate inputs and designs

- Long charging time
- Limited charging station
- Buying performance rather than the batteries
- Swap battery (like Mineral Water and LPG)
- Battery second life

The Business Model Canvas

Designed for:

Designed by:

Date:

Hotels

Version:

Kev Partners

Kev Activities

Value Propositions

• booking.com

Customer Segments

• Battery manufacturer and installer

Monitoring systems.

• Distributed Ledger Technology platform enabling transactions within the community. Provide ways to pay per use or up front

• Programmable electricity usage

Key Resources

Physical resources:

• Batteries; Smart

processing & mgt

meters; DAQ,

• Financial resources:

Initial investments.

system.

 By selling the energy as a bundle to hotel guests, it is expected that guests will manage their own electricity consumption.

 Hotels reduced potential waste of electricity

 Cost reduction passed on to guests.

 Distributed ledger technology energy transaction platform:

• Cryptocurrencies.

• Blockchain

Channels

technology (or other).

Cost Structure

Revenue Streams

• Cost of the investment, installation and maintenance of the physical batteries.

• Remuneration obtained by providing available capacity to hotels, that serves to reduce their electricity bill.

Goitia-Zabaleta et al. (2024)

STEPHEN YOUNG INSTITUTE FOR INTERNATIONAL BUSINESS

The Circularity Ladder

Implications for chemical and allied industries

William Souza

Research Associate
Stephen Young Institute
Strathclyde Business School

Prof. Emma Macdonald

Director, Stephen Young Institute for International Business

Strathclyde Business School

Chemical industry

Global chemicals sector plays a critical role in global transition towards net-zero carbon emissions

Chemical industry

Global chemicals sector plays a critical role in global transition towards net-zero carbon emissions

Complex and diverse product value chains involving every other sector:

energy, transportation, built environment, consumer goods, agriculture.

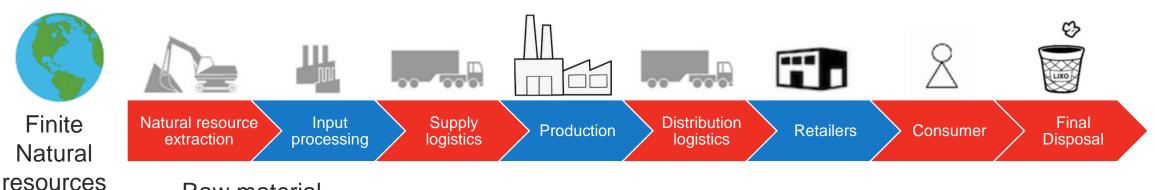
Chemical industry

Global chemicals sector plays a critical role in global transition towards net-zero carbon emissions

- Complex and diverse product value chains involving every other sector: energy, transportation, built environment, consumer goods, agriculture.
- Production of chemicals is a leading industrial source of CO2 emissions:
 3rd behind cement and iron/steel manufacturing.
- The largest industrial consumer of energy products worldwide.
- Growing demand for chemicals over the coming decades.

Boundaries and interconnectedness

- Complex overlapping, intersecting value chains including geographic regions and other sectors.
- Chemical industry's Scope 2 emissions: includes generation of purchased energy or heat.

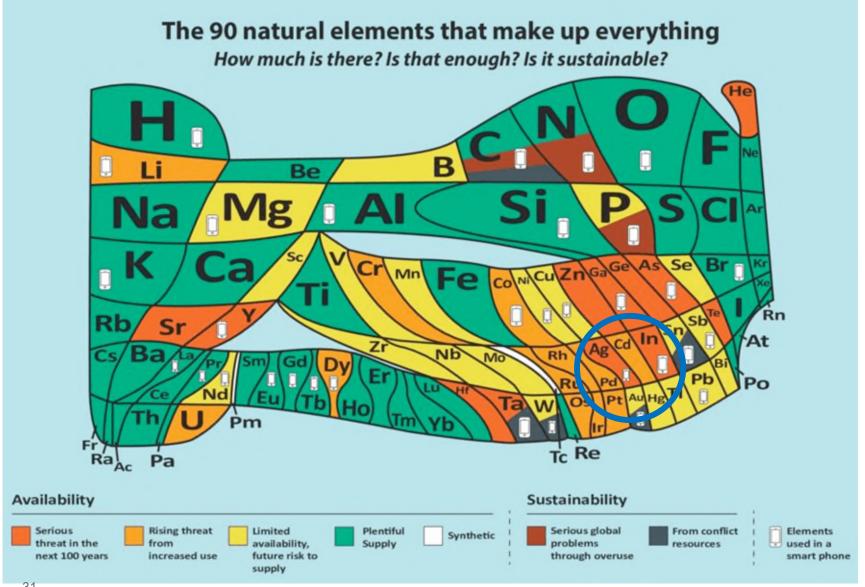

 \times

Boundaries and interconnectedness

- Complex overlapping, intersecting value chains including geographic regions and other sectors.
- Chemical industry's Scope 2 emissions: includes generation of purchased energy or heat.
- Your Scope 1 & 2 is their Scope 3:
 Downstream producers consider Chemical Industry's Scope 1/2 emissions within their Scope 3 (indirect value chain).
- Carbon emitted from chemical products is typically downstream during use or end-of-life incineration or decomposition.

What do linear operations mean?

During the last 200 years, companies have profited from linear business models

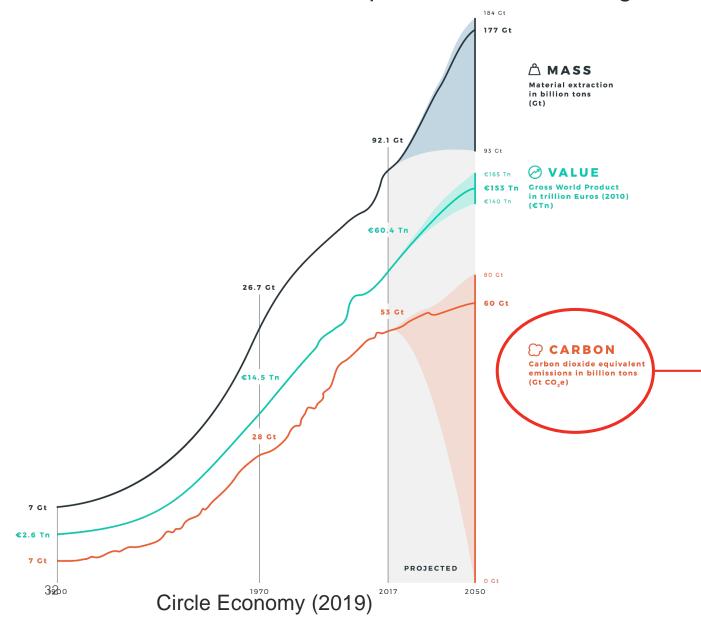

Raw material and components

Currently: 92.8% of the Global economy is linear

What are the problems emerging from the linear logic?

Scarcity of resources to conduct economic activities

1 kg of smartphones contains approximately:


- 1,732.9 mg of silver (Ag)
 - 190.9 mg of gold (Au)
- 40.1 mg of palladium (Pd)

Smartphones constitute a potential new resource for the mining of rare and precious metals

31

What are the problems emerging from the linear logic?

Environmental impacts – Climate change

Traps extra energy in the atmosphere near the Earth's surface, causing the planet to heat up.

Causes a shift in weather conditions



Shifts towards more frequent and intense extreme weather:

- Floods
- Drought
- Heatwaves
- Heavy rainfall

BBC (2024)

How to transition to circular business models?

- Post-consumed and post-industrial materials
- Technical and biological cycles
 - Circular chemistry
 - Circular ladder

From: Linear business

- Waste of valuable resources
- Overconsumption of natural resources
- Environmental impacts

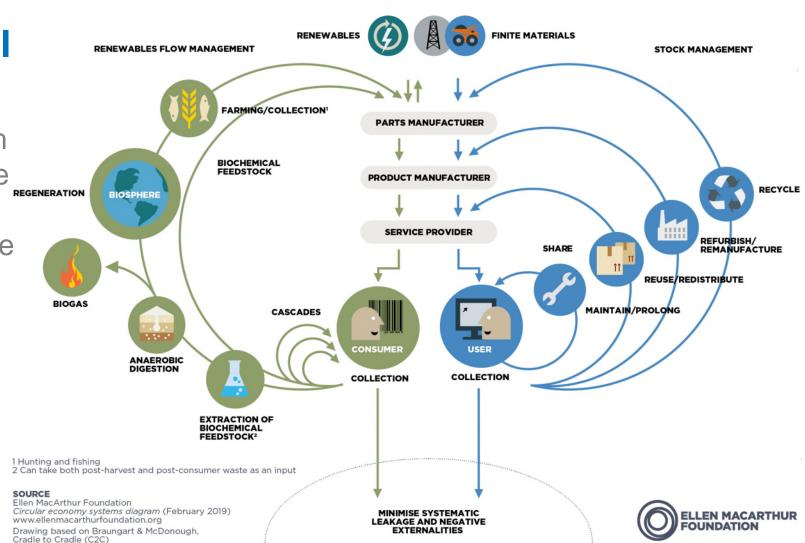
To: Circular business

- Valuable resources are not wasted
- Profit generation is maintained
- Environmental impacts prevented or minimised

The circular logic: Continuous reapplication of non-virgin material resources

Post-consumed materials

 Products and materials discarded by customers/end-users after use (Ottoni, Dias and Xavier, 2020)


Post-industrial materials

 Materials leaked from the operational process of a company (Kleinhans et al., 2021)

The circular logic

Biological cycle

Nutrients from biodegradable materials are returned to the Earth

Technical cycle

Products and materials are kept in circulation

Circular chemistry

1. Collect and use waste	5. Enhance process efficiency	9. Apply ladder of circularity
2. Maximize atom circulation	6. No out-of-plant toxicity	10. Sell service, not product
3. Optimize resource efficiency	7. Target optimal design	11. Reject lock-in
4. Strive for energy persistence	8. Assess sustainability	12. Unify industry and provide coherent policy framework

Circular operations

Ladder of circularity

R0 Refuse

R1 Rethink

R2 Reduce

R3 Re-use

R4 Repair

R5 Refurbish

R6 Remanufacture

R7 Repurpose

R8 Recycle

R9 Recover

Make product redundant by abandoning its function or by offering same function with a radically different product

Make product use more intensive through sharing products, or by putting multi-functional products in the market)

Increase efficiency in product manufacture or use by consuming fewer natural resources and materials

Re-use by another consumer of discarded product still in good condition and fulfilling original function

Repair & maintenance of defective product for use in its original function

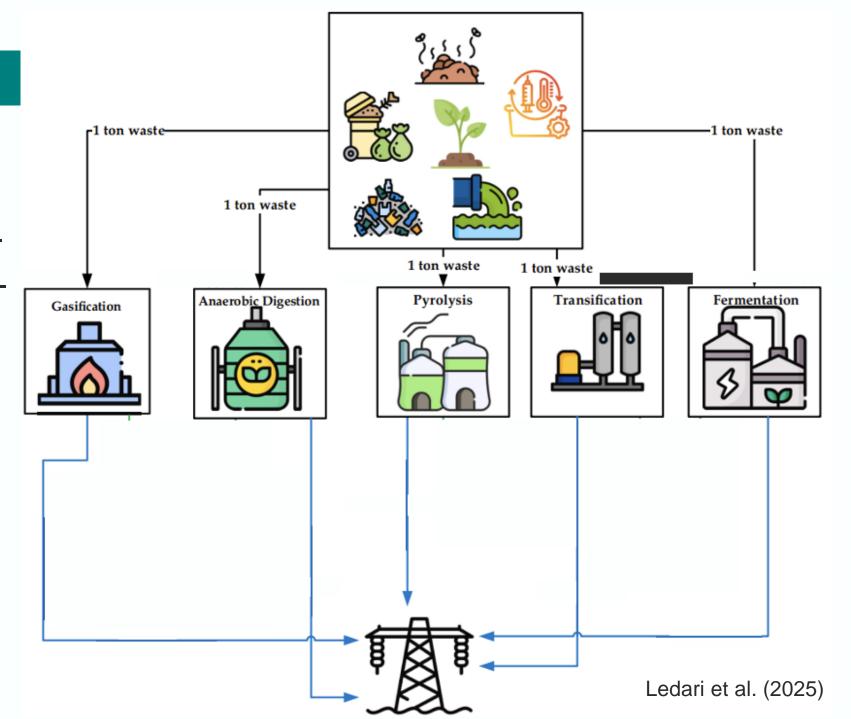
Restore an old product and bring it up to date.

Use parts of discarded product in a new product with the same function.

Use discarded product or parts in a new product with a different function.

Process material to obtain the same (high grade) or lower (low grade) quality.

Incineration of materials with energy recovery.


Linear operations

Potting et al. (2017) - PBL Netherlands Environmental Assembly Agency

R9 - Recover

Generation of electricity from post-consumed and post-industrial materials

R8 - Recycle

Process material to obtain the same (high grade) or lower (low grade) quality

Liquifying materials (such as smelting) to act as a feedstock for new material

production

R7 - Repurpose

 Use discarded product or its parts in a new product with a different function

A food company can package its products in packaging that, once empty, can be used by end-user for different purposes, such as food storage or as a measuring cup.

R6 - Remanufacture

- Use parts of discarded product in a new product with the same function
 - Includes disassembling, replacing worn broken parts, and reassembly

Renault working with partners on:

- (1) Disassembly of after-sales turbochargers.
- (2) Component testing to verify operating conditions.
- (3) Reassembly of components from different after-sales turbochargers, within original operating specifications, to assemble a new turbocharger.
- (4) Earn profits from the sale of the **remanufactured turbocharger** to end consumers.

R5 - Refurbish

Restore an old product and bring it up to date.

Obsolete smartphones have their outdated components replaced with new ones to update their functions to a working condition close to recent technological standards.

R4 - Repair

 Repair and maintenance of defective product so it can used with its original function

Corrective maintenance

Interventions to restore the product's operating conditions after a failure.

Preventive maintenance

Scheduled replacement of components or adjustments to prevent failures in working conditions.

Predictive maintenance

Sensors are installed on critical components of a product/equipment.

R3 - Re-use

 Reuse by another consumer of discarded product which is still in good condition and fulfils its original function

- (1) A company can profit by selling to customers access to a product through a rental agreement based on a monthly payment.
- (2) At the end of the agreement, the end user is responsible for returning the product to the manufacturer in usable condition.
- (3) Once at the manufacturing facilities, the product is cleaned and repackaged to be shipped for reuse by a new end user through a new rental agreement.

R2 - Reduce

Increase efficiency in product manufacture or by reducing use of materials

(1) Focus on reducing resources consumed in manufacturing

 Compared to previous versions, design a product that requires reduced amount of resources to manufacture.

(2) Focus on reducing resources consumed during use

Educational campaigns to encourage users to reduce resource consumption.

R1 - Rethink

Make product use more intensive

(1) Product Sharing

 A washing machine located in a central location of a building for multiple wash cycles per day, unlocked for collective use.

(2) Multifunctional Products

• Electronics manufacturers transition from selling single-function printers and scanners to offering multifunction devices with printing and scanning capabilities.

R0 - Refuse

Make a product redundant

(1) Abandoning the Product Function

 Technological advances that enabled video and music streaming on smartphones have made devices like CD and DVD players obsolete.

(2) Providing the same function with a separate product

- A smartphone combines multiple functions GPS location, phone calls, music player, alarm notifications, photography, etc.
- Previously, these functions were only available on individual devices

Connections between circularity and the climate change

HIGH GHG EMISSIONS MEDIUM GHG EMISSIONS Reduces CO₂ emissions **MEDIUM GHG EMISSIONS LOW GHG EMISSIONS**

MATERIALS EXTRACTION MATERIALS PROCESSING PRODUCTS USE PRODUCTS RE-USE (2ND LIFE)

The move towards circularity

Challenge to increase global circularity rates

- 9.1% 2018
- **7.2% 2023**
- **6.9% 2025**

- The global economy consumes 100 billion tons of materials per year
- Estimated reuse of non-virgin materials in consumption and production activities.

Climbing the circularity ladder

- Incorporate a circular mindset in the early stages of design
- Scan non-virgin materials available in the chain for reapplication
- Create circular partnerships with value distribution to all stakeholders
- Digitalise circular practices

Collaboration for environmental innovation

- Work collaboratively to create multiple forms of value
- Consider partnerships with sector players and stakeholders
- Harness different capabilities of collaborators /partners

Innovation for environmental sustainability requires firms to engage with external stakeholders to access expertise, solve complex problems, and gain social legitimacy. In this open innovation context, stakeholder engagement is construed as a dynamic capability that can harness differences between external stakeholders to augment their

STEPHEN YOUNG INSTITUTE FOR INTERNATIONAL BUSINESS

The Circularity Ladder

Implications for chemical and allied industries

William Souza

william.vieira-de-souza@strath.ac.uk

Emma Macdonald

emma.macdonald@strath.ac.uk

University of Strathclyde Business School

